
Branched polymers in the presence of impurities

Markus Porto,1 Arkady Shehter,2 Armin Bunde,1,2 and Shlomo Havlin1,2
1Institut für Theoretische Physik III, Universita¨t Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

2Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat Gan, Israel
~Received 23 January 1996!

We study branched polymers in the presence of impurities using thebranched polymer growth model, which
has been proposed by Lucenaet al. @Phys. Rev. Lett.72, 230~1994!#. To avoid boundary effects we study the
growth process in chemicall -space and determine the structural exponentsdl , dmin, andt. For d52 ~square
lattice! andd53 ~simple cubic lattice! our results are based on numerical simulations, while for the Bethe
lattice (d5`) the quantities of interest were obtained analytically. These results support our recent suggestion
that on the critical line the branched polymers belong to the universality class of percolation.
@S1063-651X~96!08607-2#

PACS number~s!: 61.41.1e

I. INTRODUCTION

In recent years the problem of how polymerization occurs
has been the subject of extensive experimental and theoreti-
cal studies@1–8#. There exists a large variety of polymer
structures that generally depend on the external conditions
and the type of interaction between the monomers. In this
paper we focus on linear and branched polymers in dilute
solutions, where interactions between the different polymers
can be neglected. It is well known that linear polymers in
dilute solution can be modeled by self-avoiding walk~SAW!
chains, where the SAW ensemble consists of all configura-
tions of nonintersecting random walks@1,2#. In recent years
it was found that large SAWs can be generated by kinetic
growth walks~KGWs!, where at each step a random walker
can move to a neighbor site that has not been visited before
@9–11#.

More recently, Lucenaet al. @12# generalized the KGW to
include branching@the branched polymer growth model
~BPGM!#. In this model a branched polymer is generated
from a seed in ad-dimensional lattice similar to the KGW,
but at each step branching can occur with bifurcation prob-
ability b. In addition, not all lattice sites are available for the
growing branched polymer, but a fractionq of them is
blocked. Since the KGW model of linear polymers belongs
to the universality class of linear polymers in dilute solutions
@9–11#, it is expected that its generalization, the BPGM, be-
longs to the universality class of branched polymers in dilute

solutions. It has been found by numerical simulations in a
square lattice@12,13# that there exists a critical lineqc(b)
that separates a region where SAWs are grown from a region
where compact structures are generated. It was suggested
@13# that at the critical line the structures belong to the uni-
versality class of percolation. In this paper we extend our
previous numerical study@13# to include three-dimensional
systems and the Bethe lattice~Cayley tree!. On the Cayley
tree we calculate the critical lineqc(b) rigorously. We also
determine analytically the properties of the branched poly-
mers at the critical line and show that their characteristic
exponents are the same as for percolation.

The paper is organized as follows. In Sec. II we describe
the BPGM and the quantities studied in this paper. Section
III presents the numerical results for the square and the cubic
lattice. In Sec. IV we present the analytical results for the
BPGM on the Cayley tree. Section V, finally, concludes the
paper with a discussion and a comparison of the BPGM to
related models.

II. BRANCHED POLYMER GROWTH MODEL

Consider ad-dimensional lattice where each site hasz
nearest-neighbor sites. Att50, the center of the lattice is

FIG. 1. Illustration of the first steps of a BPGM. Sites not avail-
able for the branched polymer are marked by a cross, polymer sites
by a full circle, the active sites of the polymer by an open circle,
and the growth sites by a gray circle.

FIG. 2. Phase diagram for the BPGM ind52. The inset is a
magnification of the regime around the point (b,q)5„1,qc(1)….
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occupied by a monomer seed. There arez nearest-neighbor
sites of the seed where other monomers can be added and the
polymer can grow. At stept51, two of these growth sites
are chosen randomly. One of them is occupied by a mono-
mer ~with probability 1), the other one is occupied by a
monomer with bifurcation probabilityb. In general, at step
t11 the polymer can grow from each of the monomers
added at the foregoing stept to empty nearest-neighbor sites
~growth sites!, either in a linear fashion or by bifurcation
with probabilityb. If there are no growth sites left, the poly-
mer stops growing. If a certain concentrationq of lattice sites
is blocked by impurities, they cannot serve as growth sites.
For q50 andb50, the model reduces to the KGW model.
An illustration of the BPGM for the first steps is shown in
Fig. 1.

For determining the structure of the branched polymers
we studied the growth process in ‘‘chemical’’l -space and
determined the critical exponentsdmin anddl @14#, as well as
the number of surviving polymersN(t) as a function of the
number of growth stepst. The chemical distancel between
two monomers separated by an Euclidean distancer is de-
fined as the minimum number of bonds connecting them on

the cluster. The fractal dimensiondmin describes howl scales
with r , l;r dmin. The chemical dimensiondl describes how
the cluster massM scales withl , M; l dl, and is related to
the fractal dimensiondf by df5dldmin . For SAW structures
we havedl51, dmin5df>(d12)/3 (d<4), and an expo-
nential decay of the number of surviving polymersN(t),
while for compact structures (df5d), dmin51, dl5df , and
N(t)→N(`).0 for t→`. For percolation clusters at the
critical concentration, we have a power-law behavior
N(t);t2 t̃ or, since for the BPGMt5 l , N( l ); l2 t̃ with
t̃5(t22)dl5(d/df21)dl @14#, and dmin>1.13, df

591/48,dl>1.68, and t̃>0.092 for d52, dmin>1.37,
df>2.54, dl>1.85, and t̃>0.35 for d53 and dmin52,
df54, dl52, andt̃51 for d>6. Above the critical dimen-
sion dc56, percolation on a lattice can be modeled by per-
colation on the Cayley tree.

By definition, branched polymers are grown in chemical
space: At stept51, the first shell~with l51) is grown, at
stept52, the second shell is grown, etc.~see Fig. 1!. Hence
the chemical space is the natural metric for calculating the
critical exponents of the BPGM. In fact, by generating all

FIG. 3. Three typical branched polymers generated by the BPGM;~a! in the SAW regime; (b,q)5(0.5,0.4072);~b! on the critical line,
(b,q)5(0.5,0.3415); and~c! in the compact regime, (b,q)5(0.5,0.2).

FIG. 4. Plot of the massM ( l ) and the corresponding chemical dimensiondl @obtained from successive slopes of logM(l) vs logl# as a
function of l for ~a! b51 andq50.2 ~square!, 0.404 ~full triangle!, and 0.4072~circle!; ~b! b50.5 andq50.2 ~square!, 0.3415~full
triangle!, and 0.35~circle!; and~c! q50 andb50.1 ~full diamond!, 0.058~square!, 0.0565~full triangle!, 0.055~circle!, and 0.04~full star!.
The horizontal lines represent the known valuedl>1.68 for percolation ind52. The simulations were performed on a square lattice and
averages were taken over 5000 configurations.
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shells up to a certain chemical distancel we avoid the
boundary effects present when measuringdf directly from
the mass-radius relationM;r df .

III. NUMERICAL RESULTS IN TWO
AND THREE DIMENSIONS

A. Square lattice „d52…

Figure 2 shows the phase diagram and the critical line
qc(b). The dashed line marks the percolation threshold
qc8>0.4072 of the square lattice. Above this line only finite
percolation clusters exist@14# and therefore only finite
branched polymers can be generated. Below this line and
above the critical lineqc(b), the branched polymers belong
to the universality class of SAWs, while belowqc(b) com-
pact structures withdf5d are grown. On the critical line the
numerical results~see below! suggest that the branched poly-
mers are in the universality class of percolation. Typical
branched polymers in the three regimes are shown in Fig. 3.

Figure 4 shows the mean massM ( l ) of a branched poly-
mer as a function of the chemical distancel in the vicinity of
three representative points at the critical line:~a! around
b51 @qc(1)>0.4037#, ~b! around b50.5 @qc(0.5)
>0.3415], and ~c! at q50, around bc>0.0567
@qc(0.0567)>0#.

Figures 5 and 6 show the mean Euclidean distancer of a
monomer and the number of surviving polymersN as a func-
tion of its chemical distancel from the seed for the same

parameters as in Fig. 4. We observe three types of behavior
for large l : Below the critical line we haveM ( l ); l 2,
r ( l ); l , andN( l )→N(`).0 for t→`, i.e., compact clus-
ters withdl52 anddmin51 are generated. Above the critical
line we havedl→1 anddmin→4/3, as well as an exponential
decay ofN( l ), representing the SAW universality class. At
the critical lineqc(b) the branched polymers have exponents
very close to percolation,dl>1.68, dmin>1.13, and t̃
>0.092. The results are quite convincing forb51 @Figs.
4~a!, 5~a!, and 6~a!# and for b50.5 @Figs. 4~b!, 5~b!, and
6~b!#, where the critical regime is reached already for small
values ofl . In the absence of impurities (q50) and forb
above criticality, however, there exist large crossover phe-
nomena, since initially the number of monomers grows ex-
ponentially in the absence of impurities. This is clearly seen
from Fig. 4~c! for b50.1, wheredl52 is approached from
well above. From Figs. 4~c!, 5~c!, and 6~c! we find also that
the critical point forq50 is bc50.057060.005 and the ex-
ponents, when extrapolated tol→`, are dl51.7060.05,
dmin51.1060.05, andt̃50.0960.01, being consistent with
the exponents of percolation.

Figures 4~a!, 5~a!, and 6~a! show that forb51 ~full bifur-
cation! the criticalq value isqc(1)50.404060.0005, which
is well below the percolation thresholdqc8>0.4072. The rea-
son for the difference betweenqc8 andqc(1) is that higher-
order branching~trifurcation, tetrafurcation! is forbidden,
which effectively decreasesqc(1). From this follows the
surprising observation that even on the infinite percolation

FIG. 5. Plot of the distance
r ( l ) and the corresponding frac-
tal dimension of the shortest path
dmin @obtained from successive
slopes of logr(l) vs logl# as a
function of l for the parameters
described in Fig. 4. The horizon-
tal lines represent the known
value dmin>1.13 for percolation
in d52.

FIG. 6. Plot of the number of
surviving polymersN( l ) and the
corresponding exponentt̃ @ob-
tained from successive slopes of
logN(l) vs logl# as a function of
l for the parameters described in
Fig. 4. The horizontal lines
represent the known valuet̃
>0.092 for percolation ind52.
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cluster belowqc8, which is compact on large length scales,
branched polymers with bifurcation probabilityb51 will
also end up as SAW-type polymers, as long asq.qc(1).
The difference betweenqc8 andqc(1) increases with increas-
ing coordination number. An alternative model for branched
polymers is to grow linear with probability 1 and to allow
branching with probabilityb for all remaining available
growth sites. In this case we expect thatqc(1)5qc for all
dimensions.

B. Simple cubic lattice „d53…

Figure 7 shows the phase diagram and the critical line
qc(b) for the simple cubic lattice. The dashed line marks the
percolation thresholdqc8>0.6884 of the sc lattice. The dotted
line is an extrapolation of that part of the critical line~full
line! that has been obtained numerically. Due to numerical
limitations, the properties of the branched polymer in the
dotted line regime could not be determined with the suffi-
cient accuracy.

Figure 8 shows the mean massM ( l ) of a branched poly-
mer as a function of the chemical distancel , in the vicinity
of three representative points at the critical line:~a! around
b51 @qc(1)>0.680#, ~b! around b50.5 @qc(0.5)
>0.6275], and~c! at q50, aroundb>0.

Figures 9 and 10 show the mean Euclidean distancer of a
monomer and the number of surviving polymersN as a func-
tion of its chemical distancel from the seed, for the same
parameters as in Fig. 8. As in Figs. 4–6 ford52, we observe
three types of behavior. Below the critical line we have
M ( l ); l 3, r ( l ); l , and N( l )→N(`).0 for t→`, i.e.,
compact clusters withdl53 and dmin51 are generated.
Above the critical line we havedl→1 anddmin→5/3, as well
as an exponential decay ofN( l ), representing the SAW uni-
versality class. At the critical lineqc(b) the branched poly-
mers have exponents very close to percolation,dl>1.85,
dmin>1.37, andt̃>0.35. Again the results are convincing
for b51 @Figs. 8~a!, 9~a!, and 10~a!# and forb50.5 @Figs.
8~b!, 9~b!, and 10~b!#, where the critical regime is reached
already for small values ofl . In the absence of impurities
(q50) and forb close to 0, the results are not conclusive
and from the numerical data it is not clear whetherbc is
finite or 0. In the discussion~Sec. V! heuristic arguments are
given thatbc is very small but finite. Figures 8~a!, 9~a!, and
10~a! show that for full bifurcation (b51), qc(1)
50.68060.005, which is belowqc8>0.6884.

IV. BRANCHED POLYMERS ON THE CAYLEY TREE

Consider a Cayley tree with coordination numberz,
where each site is free with probabilityp and blocked with
probabilityq512p. The mean number of sites on a cluster
at chemical distancel from a center site is

g~ l !5zp@~z21!p# l21. ~1!

For l→`, g( l ) decreases exponentially to 0 for (z21)p
,1 and diverges for (z21)p.1. Therefore the condition

FIG. 7. Phase diagram for the BPGM ind53. The inset is a
magnification of the regime around the point (b,q)5„1,qc(1)….

FIG. 8. Plot of the massM ( l ) and the corresponding chemical dimensiondl @obtained from successive slopes of logM(l) vs logl# as a
function of l for ~a! b51 andq50.2 ~full diamond!, 0.675~square!, 0.68~full triangle!, 0.685~circle!, and 0.6884~full star!; ~b! b50.5 and
q50.2 ~full diamond!, 0.62 ~square!, 0.6275~full triangle!, 0.635~circle!, and 0.645~full star!; and ~c! q50 andb50.01 ~full diamond!,
0.005 ~square!, 0.003 ~full triangle!, 0.001 ~circle!, and 0.0001~full star!. The horizontal lines represent the known valuedl>1.85 for
percolation ind53. The simulations were performed on a simple cubic lattice and averages were taken over 5000 configurations.
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lim
l→`

g~ l !5constÞ0,̀ ~2!

defines the critical point pc , (z21)pc51, or
pc5(z21)21. The quantity in square brackets in~1!,
G(z,p)[(z21)p, specifies the mean number of cluster sites
in shell l11 that are connected to a cluster site in shelll .
The probability that a cluster site in shelll hask neighbor
sites in shelll11 is

wk5S z21

k D pk~12p!z212k. ~3!

Hence the mean number of sites generated byk branches
from a site in shelll is kwk and thus

(
k50

z21

kwk5~z21!p. ~4!

In the BPGM, k can obtain the value 1 with probability
12b and the value 2 with probabilityb. Hence, in the
BPGM, the mean number of cluster sites in shelll11 that
are connected to a cluster site in shelll is

GBPGM5~12b!F (
k50

z21

min~k,1!wkG1bF (
k50

z21

min~k,2!wkG .
~5!

Using Eq.~3! it is easy to verify that the sums in~5! can be
simplified to

GBPGM511b@~z22!qz211~z21!qz2211#2qz21. ~6!

The critical line bc(q) @which is the inverse function of
qc(b)# is obtained from the condition

GBPGM51, ~7!

which yields

bc~q!5
qz21

~z22!qz212~z21!qz2211
. ~8!

Figure 11 shows bc(q) from Eq. ~8!. Note that
bc(0)50 for all z, hence the point (q50, b50) is on the
critical line. If we approach this point from theq axis
(b50, q→0), we expect SAWs, if we approach it from the
b axis (q50, b→0), we expect compact clusters, and, as
will be shown below, we expect percolation clusters if we
approach it along the critical line.

For b51, we haveqc(1)5qc85 1
2 for z53, while for

z.3, qc(1) is smaller thanqc85121/(z21); see Fig. 11. As
expected the differenceqc82qc(1) increases withz. For the
alternative model introduced in Sec. III we expect
qc(1)5qc8 for all coordination numbersz.

FIG. 9. Plot of the distance
r ( l ) and the corresponding fractal
dimension of the shortest path
dmin @obtained from successive
slopes of logr(l) vs logl# as a func-
tion of l for the parameters de-
scribed in Fig. 8. The horizontal
lines represent the known value
dmin>1.37 for percolation in
d53.

FIG. 10. Plot of the number
of surviving polymersN( l ) and
the corresponding exponentt̃
@obtained from successive slopes
of logN( l ) vs logl # as a function
of l for the parameters described
in Fig. 8. The horizontal lines
represent the known value
t̃ >0.35 for percolation ind53.
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To see that the branched polymers on the critical line
belong to the universality class of percolation, note that~6!
can be written as

GBPGM5~z21!p* , ~9!

with an effective percolation probabilityp* ,

p*5
1

z21
1
b@~z22!qz211~z21!qz2211#2qz21

z21
.

~10!

At the critical line, the second term in~10! vanishes@see Eq.
~6!# andp*51/(z21), as in percolation on the Cayley tree.
Henceg( l ) for the BPGM is, apart from a constant prefactor,
the same as for percolation and thus all the critical exponents
@which can be obtained fromg( l ); see@14## are the same as
for percolation.

To test the convergence towards the analytical results we
have performed extensive Monte Carlo simulations of the
BPGM on the Cayley tree. Figures 12 and 13 show the
chemical dimensiondl and the exponentt̃ of branched poly-
mers on the Cayley tree as a function of the chemical dis-
tance l for ~a! z53 and ~b! z54, in both cases for three
points on the critical line. We observe the expected behavior
for large l , M ( l ); l 2 andN( l ); l21.

V. DISCUSSION

From the three-dimensional simulations one cannot deter-
mine whetherbc for q50 is finite or zero. However, we can
present a heuristic argument thatbc is finite for any finite
dimensiond. Consider the caseq50, b50, where KGWs
are generated. For any finite dimensiond there is a finite
probability that the KGW will be trapped in a local cage and
therefore the walk will finally terminate. This implies that
the number of surviving walks ofl steps,N( l ), decays ex-
ponentially asN( l )/N(0);exp(2l/jl), where j l→` for
d→`.

Next we consider the caseq50, b.0. The characteristic
length jb between successive branchings is about 1/b. For
j l!jb , the growth will stop before branching occurs, while
for j l@jb we expect compact structures. From this we are
led to assume thatbc is of the order of 1/j l . Indeed, our
numerical estimate forj l in d52 is j l>50, which is of the
order of magnitude of 1/bc . In d53, j l is about 104. This
indicates thatbc is of the order of 10

24, which is beyond the
detection of the available computers. On the Cayley tree, we
havej l5` and thusbc50, in agreement with our analytical
calculations.

Finally, we like to mention that a quite similar model has
been proposed by@15#, but because of the small systems
studied the exponents could not be identified. In addition, a

FIG. 11. Phase diagram for the BPGM on the Cayley tree, for
coordination numbersz53,4,5. The dashed lines represent the re-
spective percolation thresholds 1/(z21).

FIG. 12. Plot of the chemical dimensiondl as a function of
1/l @obtained from the successive slopes of logM(l) vs logl# for ~a!
z53, (b,q)5(1,0.5) ~full circle!, (b,q)5(0.5,0.4142) ~square!,
and (b,q)5(0.25,0.3333) ~full diamond! and ~b! z54,
(b,q)5(1,0.6527)~full circle!, (b,q)5(0.5,0.5774)~square!, and
(b,q)5(0.25,0.5)~full diamond!. The horizontal lines represent the
known valuedl52 for percolation on a Cayley tree. The simula-
tions were performed on a Cayley tree and averages were taken
over 53106 configurations.

FIG. 13. Plot of the exponentt̃ as a function of 1/l @obtained
from the successive slopes of logN(l) vs logl# for the parameters
described in Fig. 12. The horizontal lines represent the known value
t̃ 51 for percolation on a Cayley tree.
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somewhat similar phase diagram was obtained from an
Eden-type growth model, where the sites are blocked with
probability q and the growth sites are active forever with a
probability b or active for finite timet0 with probability
12b @16# Similar to the BPGM, there exists a critical line
that separates SAW structures from compact structures and
on the critical line the structures belong to the universality
class of percolation.
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