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Branched polymers in the presence of impurities
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We study branched polymers in the presence of impurities usinigrémehed polymer growth modethich
has been proposed by Luceetaal. [Phys. Rev. Lett72, 230(1994)]. To avoid boundary effects we study the
growth process in chemicddspace and determine the structural expondptsl,,;,, andz. Ford=2 (square
lattice) andd=3 (simple cubic latticg our results are based on numerical simulations, while for the Bethe
lattice (d=) the quantities of interest were obtained analytically. These results support our recent suggestion
that on the critical line the branched polymers belong to the universality class of percolation.
[S1063-651%96)08607-2

PACS numbds): 61.41+e

[. INTRODUCTION solutions. It has been found by numerical simulations in a
square latticd 12,13 that there exists a critical ling.(b)

In recent years the problem of how polymerization occurghat separates a region where SAWSs are grown from a region
has been the subject of extensive experimental and theoretithere compact structures are generated. It was suggested
cal studies[1-8]. There exists a large variety of polymer [13] that at the critical line the structures belong to the uni-
structures that generally depend on the external conditiongersality class of percolation. In this paper we extend our
and the type of interaction between the monomers. In thigprevious numerical studj13] to include three-dimensional
paper we focus on linear and branched polymers in dilutsystems and the Bethe lattic€ayley tre¢. On the Cayley
solutions, where interactions between the different polymergree we calculate the critical ling;(b) rigorously. We also
can be neglected. It is well known that linear polymers indetermine analytically the properties of the branched poly-
dilute solution can be modeled by self-avoiding weB&W)  mers at the critical line and show that their characteristic
chains, where the SAW ensemble consists of all configuraexponents are the same as for percolation.
tions of nonintersecting random walks,2]. In recent years The paper is organized as follows. In Sec. Il we describe
it was found that large SAWs can be generated by kinetithe BPGM and the quantities studied in this paper. Section
growth walks(KGWs), where at each step a random walker Il presents the numerical results for the square and the cubic
can move to a neighbor site that has not been visited befodattice. In Sec. IV we present the analytical results for the
[9-11]. BPGM on the Cayley tree. Section V, finally, concludes the

More recently, Lucenat al.[12] generalized the KGW to  paper with a discussion and a comparison of the BPGM to
include branching[the branched polymer growth model related models.

(BPGM)]. In this model a branched polymer is generated

from a seed in al-dimensional lattice similar to the KGW, Il. BRANCHED POLYMER GROWTH MODEL

but at each step branching can occur with bifurcation prob-
ability b. In addition, not all lattice sites are available for the
growing branched polymer, but a fractiap of them is
blocked. Since the KGW model of linear polymers belongs

Consider ad-dimensional lattice where each site has
nearest-neighbor sites. At=0, the center of the lattice is

to the universality class of linear polymers in dilute solutions

[9-11], it is expected that its generalization, the BPGM, be-

longs to the universality class of branched polymers in dilute = Qc(l)
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FIG. 1. lllustration of the first steps of a BPGM. Sites not avail- 0 be b 1

able for the branched polymer are marked by a cross, polymer sites
by a full circle, the active sites of the polymer by an open circle, FIG. 2. Phase diagram for the BPGM i@+ 2. The inset is a
and the growth sites by a gray circle. magnification of the regime around the poifit, §) = (1,.(1)).
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FIG. 3. Three typical branched polymers generated by the BP@Mn the SAW regime; §,q) =(0.5,0.4072);(b) on the critical line,
(b,q)=(0.5,0.3415); andc) in the compact regimeb(q)=(0.5,0.2).

occupied by a monomer seed. There aneearest-neighbor the cluster. The fractal dimensialky,, describes how scales
sites of the seed where other monomers can be added and tfygh r, | ~r9in. The chemical dimensiod, describes how
polymer can grow. At step=1, two of these growth sites the cluster mas# scales withl, M~1%, and is related to
are chosen randomly. One of them is occupied by @ monOme fractal dimension; by d;=d,d;,. For SAW structures
mer (with pr_obaplllty 1_), the oth(_e_r one is occupied by a e haved, =1, d,;,=d;=(d+2)/3 (d<4), and an expo-
monomer with bifurcation probabilitp. In general, at step o 4iq) decay of the number of surviving polymext),
t+1 the polymer can grow from each of th? MONOMETS, jje for compact structuresd¢=d), d,=1, d,=d;, and
added at Fhe for_egomg stepo empty nearest-nelghbor s!tes N(t)—N(«)>0 for t—o. For percolation clusters at the
(growth siteg, either in a linear fashion or by bifurcation _: . . )
with probabilityb. If there are no growth sites left, the poly- critical 7(:70ncen'Frat|0n, we have a power-lavy; be.hawor
mer stops growing. If a certain concentratipof lattice sites 'Y,(t)Nt or, since for the BPGM =1, N(I)~I"" with
is blocked by impurities, they cannot serve as growth sites.”=(7—2)di=(d/d;—1)d, [14], and dp,=1.13, d;
For =0 andb=0, the model reduces to the KGW model. =91/48d,=1.68, and 7=0.092 for d=2, dp,=1.37,
An illustration of the BPGM for the first steps is shown in dr=2.54, d;=1.85, andr=0.35 for d=3 and dy,=2,
Fig. 1. d;=4,d,=2, and7=1 for d=6. Above the critical dimen-
For determining the structure of the branched polymerssiond.=6, percolation on a lattice can be modeled by per-
we studied the growth process in “chemical“space and colation on the Cayley tree.
determined the critical exponerds,, andd, [14], as well as By definition, branched polymers are grown in chemical
the number of surviving polymend(t) as a function of the space: At stef=1, the first shel(with |=1) is grown, at
number of growth steps The chemical distancebetween stept=2, the second shell is grown, etsee Fig. 1. Hence
two monomers separated by an Euclidean distanede- the chemical space is the natural metric for calculating the
fined as the minimum number of bonds connecting them omwritical exponents of the BPGM. In fact, by generating all
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FIG. 4. Plot of the masM (l) and the corresponding chemical dimensehriobtained from successive slopes of M) vs lod] as a
function of | for (@) b=1 andq=0.2 (square, 0.404 (full triangle), and 0.4072(circle); (b) b=0.5 andg=0.2 (square, 0.3415(full
triangle), and 0.35(circle); and(c) =0 andb= 0.1 (full diamond, 0.058(squarg, 0.0565(full triangle), 0.055(circle), and 0.04(full star).

The horizontal lines represent the known vatije=1.68 for percolation ird=2. The simulations were performed on a square lattice and
averages were taken over 5000 configurations.
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FIG. 5. Plot of the distance
r(I) and the corresponding frac-
tal dimension of the shortest path
dmin [Obtained from successive
slopes of log(l) vs lod] as a
function of | for the parameters
described in Fig. 4. The horizon-
tal lines represent the known
value d,,;=1.13 for percolation
ind=2.

shells up to a certain chemical distantewe avoid the parameters as in Fig. 4. We observe three types of behavior

boundary effects present when measurihgdirectly from  for large I: Below the critical line we haveM(l)~12,

the mass-radius relatiod ~r 9. r(1)~I, andN(l)—N(«)>0 for t—w, i.e., compact clus-
ters withd,=2 andd,,;,= 1 are generated. Above the critical

Il NUMERICAL RESULTS IN TWO line we haved,— 1 andd,,;,,—4/3, as well as an exponential

AND THREE DIMENSIONS decay_ _ofN(_I), representing the SAW universality class. At
. the critical lineg.(b) the branched polymers have exponents
A. Square lattice (d=2) very close to percolationd,=1.68, d,;;=1.13, and7

Figure 2 shows the phase diagram and the critical line=0.092. The results are quite convincing for=1 [Figs.
gc(b). The dashed line marks the percolation threshold4(@, 5(@), and Ga)] and for b=0.5 [Figs. 4b), 5(b), and
q,=0.4072 of the square lattice. Above this line only finite 6(b)], where the critical regime is reached already for small
percolation clusters exisf14] and therefore only finite values ofl. In the absence of impuritiegj&0) and forb
branched polymers can be generated. Below this line andbove criticality, however, there exist large crossover phe-
above the critical linggy.(b), the branched polymers belong nomena, since initially the number of monomers grows ex-
to the universality class of SAWSs, while belogy(b) com-  ponentially in the absence of impurities. This is clearly seen
pact structures witll;=d are grown. On the critical line the from Fig. 4c) for b=0.1, whered,;=2 is approached from
numerical result$see belowsuggest that the branched poly- well above. From Figs. 4), 5(c), and &c) we find also that
mers are in the universality class of percolation. Typicalthe critical point forg=0 is b,=0.0570= 0.005 and the ex-
branched polymers in the three regimes are shown in Fig. Jonents, when extrapolated te-«, are d;=1.70+0.05,

Figure 4 shows the mean madg|) of a branched poly- dmin=1.10+0.05, andr=0.09+0.01, being consistent with
mer as a function of the chemical distarida the vicinity of ~ the exponents of percolation.
three representative points at the critical lif@ around Figures 4a), 5(a), and Ga) show that forb=1 (full bifur-
b=1 [q.(1)=0.4037, (b) around b=0.5 [q.(0.5) cation the criticalq value isq.(1)=0.4040t 0.0005, which
=0.3415], and (¢) at q=0, around b,=0.0567 is well below the percolation threshotd=0.4072. The rea-
[0(0.0567)=0]. son for the difference betweeag] andq.(1) is that higher-

Figures 5 and 6 show the mean Euclidean distaneka  order branching(trifurcation, tetrafurcation is forbidden,
monomer and the number of surviving polymétss a func-  which effectively decreaseg.(1). From this follows the
tion of its chemical distancé from the seed for the same surprising observation that even on the infinite percolation

Y 283 ooo Cooononoona W 00660000
10 SQSSAAA %BSSO AAAAAAA Qé @BBBSQQ
N O OO . FIG. 6. Plot of the number of
N(0) 16" surviving polymersN(l) and the
O . ~
* corresponding exponent [ob-
o tained from successive slopes of
03 e o logN(l) vs lod] as a functiqn of.
%;O | for the parameters described in
T A Fig. 4. The horizontal lines
Ay %‘ =
s A D%‘“ represent the known valuer
0 ——-— =0.092 for percolation ird=2.
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Figure 8 shows the mean ma¥ql) of a branched poly-
mer as a function of the chemical distaricen the vicinity
of three representative points at the critical lifi@: around
+ q.(1) b=1 [q.(1)=0.680, (b) around b=0.5 [q.(0.5)
=0.6275], andc) at q=0, aroundb=0.

Figures 9 and 10 show the mean Euclidean distanufea
monomer and the number of surviving polymatras a func-
tion of its chemical distancé from the seed, for the same
parameters as in Fig. 8. As in Figs. 4—6 tbr 2, we observe

three types of behavior. Below the critical line we have
e 4(1) M()~I3, r()~I, and N(I)—=N()>0 for t—ox, ie.,

-~

)
I 0677 compact clusters wittd,=3 and d,;,=1 are generated.
i compact 097, ! Above the critical line we have,— 1 andd,;,—5/3, as well
| structures as an exponential decay (1), representing the SAW uni-
00 1 versality class. At the critical ling.(b) the branched poly-
b mers have exponents very close to percolatidyx 1.85,

dmir=1.37, and7=0.35. Again the results are convincing
FIG. 7. Phase diagram for the BPGM ih=3. The insetis a for b=1 [Figs. §a), %(a), and 1@a)] and forb=0.5 [Figs.
magnification of the regime around the poiit, §) = (1,q.(1)). 8(b), 9(b), and 1@b)], where the critical regime is reached
already for small values df. In the absence of impurities
(g=0) and forb close to 0, the results are not conclusive

| q | I and from the numerical data it is not clear whetleris
also end up as SAW-type polymers, as 10nggasdc(1). finjte or 0. In the discussiofSec. \} heuristic arguments are

The difference betweeq, andg(1) increases with increas- dgiven thatb, is very small but finite. Figures(8), 9(a), and
ing coordination number. An alternative model for branche 10(a show that for full bifurcation b=1), q.(1)
polymers is to grow linear with probability 1 and to allow _ 4 ge0+0 005. which is belovg =0.6884.

branching with probabilityb for all remaining available ' ¢
growth sites. In this case we expect thp{1)=q, for all
dimensions.

cluster belowqg,, which is compact on large length scales,
branched polymers with bifurcation probability=1 will

IV. BRANCHED POLYMERS ON THE CAYLEY TREE

Consider a Cayley tree with coordination numker
B. Simple cubic lattice (d=23) where each site is free with probabilityand blocked with

Figure 7 shows the phase diagram and the critical "neprobabili.tyqzll—p. The mean numper Qf sites on a cluster
at chemical distanckfrom a center site is

gc(b) for the simple cubic lattice. The dashed line marks the
percolation threshold.=0.6884 of the sc lattice. The dotted
line is an extrapolation of that part of the critical lirll g(h=zp(z-1)p]' % @
line) that has been obtained numerically. Due to numerical

limitations, the properties of the branched polymer in the

dotted line regime could not be determined with the suffi-For [ -, g(l) decreases exponentially to O for-{1)p
cient accuracy. <1 and diverges ford—1)p>1. Therefore the condition

=
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FIG. 8. Plot of the masM (l) and the corresponding chemical dimensehriobtained from successive slopes of M) vs lod] as a
function ofl for (a) b=1 andg= 0.2 (full diamond, 0.675(square, 0.68(full triangle), 0.685(circle), and 0.6884full star); (b) b=0.5 and
g=0.2 (full diamond, 0.62(squarg, 0.6275(full triangle), 0.635(circle), and 0.645(full star); and(c) q=0 andb=0.01 (full diamond),
0.005 (square, 0.003 (full triangle), 0.001 (circle), and 0.0001(full star). The horizontal lines represent the known vallje=1.85 for
percolation ind=3. The simulations were performed on a simple cubic lattice and averages were taken over 5000 configurations.
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FIG. 9. Plot of the distance
r(l) and the corresponding fractal
dimension of the shortest path
dmin [obtained from successive
slopes of log(l) vs lod] as a func-
tion of | for the parameters de-
scribed in Fig. 8. The horizontal
lines represent the known value
d,i»=1.37 for percolation in
d=3.

lim g(1)=const: 0,0 2) Using Eq.(3) it is easy to verify that the sums {{3) can be
| —o0 simplified to

defines the critical point p., (z—1)pc=1, or Gepew=1+b[(z=2)g* '+(z-1)g* *+1]-g* .  (6)
p.=(z—1)"1. The quantity in square brackets ifl), N ) o ] )
G(z,p)=(z—1)p, specifies the mean number of cluster sitesThe cr!tlcal Ime b.(q) [which |s.Fhe inverse function of
in shell | +1 that are connected to a cluster site in shell dc(b)] is obtained from the condition

The probability that a cluster site in shéllhask neighbor

sites in shell +1 is Gepan=1, @
z-1 S which yields
wk=( ‘ )pku—p)Z ek ) Y
z—1

Hence the mean number of sites generatedkdyranches b.(g)= _ q _ _ (8)
from a site in shell is kw, and thus () (z-=2)g* ' = (z-1)g" *+1

z-1 Figure 11 showsb.(q) from Eg. (8). Note that

2 kw,=(z—1)p. (4 b.(0)=0 for all z, hence the pointd=0, b=0) is on the

k=0

critical line. If we approach this point from thg axis

(b=0, q—0), we expect SAWSs, if we approach it from the
In the BPGM, k can obtain the value 1 with probablllty b axis (q:o, b_,o), we expect Compact C|usterS, and, as
1-b and the value 2 with probability. Hence, in the wjll be shown below, we expect percolation clusters if we
BPGM, the mean number of cluster sites in shelll that approach it a|ong the critical line.
are connected to a cluster site in sHeié For b=1, we haveqy(1)=q.=} for z=3, while for
,o1 z>3,9(1) is smaller tham,=1—1/(z—1); see Fig. 11. As
2 min(k,2)w, expected the differencg,—q.(1) increases witlz. For the
K=0 ' ' alternative model introduced in Sec. Il we expect

(50 q.(1)=q, for all coordination numbers.

z—1

> min(k,)w, | +b
k=0

Ggpem=(1—Dh)

10 (b) Saagpare 0eeseeesese (C) o eemsssssasessssses
g
N **SOO 4 FIG. 10. Plot of the number
N(0) 161 **OO of surviving polymersN(l) anEI
N the corresponding exponent
[obtained from successive slopes
] - = OO* of logN(l) vs lod ] as a functipn
s * 0 of | for the parameters described
% 05 Nes) **&063 in Fig. 8. The horizontal lines
o o %ﬂﬁaﬁ-“. represent the known value
0 P 000000000088 Os0EeReEIEH 7=0.35 for percolation ird=3.
2 1 1 2
10 10 10 10 10 10
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FIG. 13. Plot of the exponent as a function of 1/[obtained
from the successive slopes of () vs lod] for the parameters

FIG. 11. Phase diagram for the BPGM on the Cayley tree, fordescribed in Fig. 12. The horizontal lines represent the known value
coordination numberg=3,4,5. The dashed lines represent the re-7=1 for percolation on a Cayley tree.
spective percolation thresholds 44 1).

To see that the branched polymers on the critical lin
belong to the universality class of percolation, note {(Gat

can be written as

with an effect

Ggpev=(z—1)p*,

ive percolation probability*,

z—1

22

N

1.8
dy
2.2

1.8

FIG. 12. Plot of the chemical dimensiah) as a function of
1/ [obtained from the successive slopes of\t{h vs lod] for (a)
z=3, (b,g)=(1,0.5) (full circle), (b,q)=(0.5,0.4142) (square,
and (,9)=(0.25,0.3333) (full diamond and (b)
(b,q)=(1,0.6527) (full circle), (b,q)=(0.5,0.5774)(squarg, and

1 . bl(z—2)g? *+(z—1)g* 2+1]—qg* !

z—1

(@)

Caad 2 B

(b)

m_'j 2 3

0.002 0.004 0.006 0.008 0.01
1/¢

At the critical line, the second term {10) vanishegsee Eq.

(6)] andp* =1/(z—1), as in percolation on the Cayley tree.
eHenceg(l) for the BPGM is, apart from a constant prefactor,
the same as for percolation and thus all the critical exponents
[which can be obtained from(l); see[14]] are the same as
for percolation.

To test the convergence towards the analytical results we
have performed extensive Monte Carlo simulations of the
BPGM on the Cayley tree. Figures 12 and 13 show the
chemical dimensionl, and the exponen of branched poly-
mers on the Cayley tree as a function of the chemical dis-
tancel for (a) z=3 and(b) z=4, in both cases for three
points on the critical line. We observe the expected behavior
for largel, M(1)~12 andN(l)~1"1.

V. DISCUSSION

From the three-dimensional simulations one cannot deter-
mine whetheb, for g=0 is finite or zero. However, we can
present a heuristic argument that is finite for any finite
dimensiond. Consider the casg=0, b=0, where KGWs
are generated. For any finite dimensidnthere is a finite
probability that the KGW will be trapped in a local cage and
therefore the walk will finally terminate. This implies that
the number of surviving walks df steps,N(l), decays ex-
ponentially asN(1)/N(0)~exp(—1/¢), where &—o for
d—oo,

Next we consider the cagg=0, b>0. The characteristic
length &, between successive branchings is abobt Hor
& <&y, the growth will stop before branching occurs, while
for &> ¢, we expect compact structures. From this we are
led to assume thdb. is of the order of 1. Indeed, our
numerical estimate fo§ in d=2 is &£=50, which is of the
order of magnitude of bj,. In d=3, £ is about 10. This
indicates thab is of the order of 104, which is beyond the
detection of the available computers. On the Cayley tree, we
have¢ =« and thush.=0, in agreement with our analytical

(b,q) = (0.25,0.5)(full diamond. The horizontal lines represent the calculations.

known valued,=2 for percolation on a Cayley tree. The simula-

Finally, we like to mention that a quite similar model has

tions were performed on a Cayley tree and averages were takdveen proposed byl5], but because of the small systems
over 5x 10F configurations.

studied the exponents could not be identified. In addition, a
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somewhat similar phase diagram was obtained from an ACKNOWLEDGMENTS
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